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1. Introduction

The AdS/CFT correspondence [1 – 3], which has led to many exciting developments in the

duality between type IIB string theory on AdS5×S5 and N = 4 super Yang-Mills theory, is

now being extended into AdS4/CFT3. A most promising candidate is N = 6 super Chern-

Simons theory with SU(N) × SU(N) gauge symmetry and level k. This model, which was

first proposed by Aharony, Bergman, Jafferis, and Maldacena [4], is believed to be dual to

M-theory on AdS4 × S7/Zk. Furthermore, in the planar limit of N, k → ∞ with a fixed

value of ’t Hooft coupling λ = N/k, the N = 6 Chern-Simons is believed to be dual to

type IIA superstring theory on AdS4 × CP
3.

Quantum integrability of the planar N = 6 Chern-Simons theory was first discovered

by Minahan and Zarembo in the leading two-loop-order perturbative computation of the

anomalous dimensions of gauge-invariant composite operators [5]. (See also [6].) Its ex-

citation spectrum and symmetry have been studied in [7] and all-loop Bethe ansatz, first

conjectured in [8], was confirmed by the exact S-matrix first proposed in [9].

Integrability in the string theory side is also under active investigation. The Penrose

limit of the type IIA string and BMN-like spectrum have been studied in [10]. Various

aspects of classical integrability in the λ ≫ 1 limit have been found in [11 – 14]. The giant

magnon (GM) solution [7, 15] and its finite-size effect [16, 17] have been computed. The

GM and single spike (SS) solutions of membranes on AdS4 × S7 background and their

finite-size effects have been worked out in [18] and such string solutions as circular and

pulsating strings [19] and spiky strings and finite-size effects on AdS4 ×CP
3 [20] have been

found. Also recently, one-loop quantum correction to the GMs has been computed [21].
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All these solutions, however, are restricted to the strings moving in Rt × S2 × S2 with

one angular momentum. The configuration in the target space is in such a way that the

azimuthal angle of the string coordinates in the first S2 is opposite to that in the second

sphere. The purpose of this article is to find classical solutions with two angular momenta

in CP
3. Our string solutions develop spikes in the two spheres S2×S2 ⊂ CP

3 with a certain

dynamics in U(1) fiber. The picture is analogous to the dyonic GM in AdS5 ×S5 [22]. We

want to emphasize that the Neumann-Rosochatius (NR) integrable system is very effective

for dealing with the strings on CP
3. This integrable system is obtained by reformulating the

problem in a conformal gauge using the Polyakov action and assuming a particular ansatz

for string coordinates. This approach has been previously developed and applied to find

classical solutions such as the GM [23] and SS [24] of type IIB string theory on AdS5 × S5

in [25 – 27]. The application of the NR system to the SS in S3 has been worked out in [28],

the most general case of GM and SS has been considered in [29] and to the finite-size effects

in [30]. The NR integrable system in AdS4/CFT3 was used to find the GM solution for the

membrane on AdS4×S7 [31] and to compute the finite-size effects in [18]. In this article we

apply this system to the strings moving in the Rt×CP
3 background. The space CP

3 can be

thought as a U(1) fibration over S2×S2 (see the appendix for basic facts about CP
3). Our

ansatz for string coordinates allows motion in S2×S2 subspace and U(1) fiber as well. The

solutions we find contain the GM solutions for motion in S2 ×S2 found in [15] as a special

case. Using this formulation, we compute the finite-size effects of the GM and the SS strings.

The paper is organized as follows. In section 2 we introduce the classical string action

on Rt × CP
3 and the corresponding NR system. We provide explicit GM and SS solutions

moving in Rt × CP
3 and provide an analysis of the finite-size effects in section 3. We

conclude in section 4 with a brief discussion of our results.

2. Strings on Rt × CP
3 and the NR integrable system

Let us start with the Polyakov string action

SP = −T

2

∫

d2ξ
√−γγmnGmn, Gmn = gMN∂mXM∂nXN , (2.1)

∂m = ∂/∂ξm, m, n = (0, 1), (ξ0, ξ1) = (τ, σ), M,N = (0, 1, . . . , 9),

and choose conformal gauge γmn = ηmn = diag(−1, 1), in which the Lagrangian and the

Virasoro constraints take the form

Ls =
T

2
(G00 − G11) (2.2)

G00 + G11 = 0, G01 = 0. (2.3)

where T is the string tension.

The background metric gMN for AdS4 × CP
3 is given by

ds2 = gMNdxMdxN = R2

(

1

4
ds2

AdS4 + ds2
CP

3

)

, R2 =
√

32π2λ,
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where λ ≡ N/k is the ’t Hooft coupling. With α′ = 1 convention, this coupling is related

to the string tension by

TR2

2
=

√
2λ,

which is different from the case of AdS5 × S5.

The coordinates describing the background can be chosen such that

4
∑

i,j=0

ηijy
iyj +

(

R

2

)2

= 0, ηij = diag(−1, 1, 1, 1,−1),

for the AdS part and

8
∑

i=1

(xi)2 − R2 = 0,
∑

i=1,3,5,7

(

xi∂mxi+1 − xi+1∂mxi
)

= 0,

for the CP
3 part [15]. Further on, we restrict ourselves to the Rt ×CP

3 subspace for which

y1 = y2 = y3 = 0, and introduce the complex coordinates

z = y0 + iy4, w1 = x1 + ix2, w2 = x3 + ix4, w3 = x5 + ix6, w4 = x7 + ix8.

Now, we can embed the string as follows

z = Z(τ, σ) =
R

2
eit(τ,σ), wa = Wa(τ, σ) = Rra(τ, σ)eiϕa(τ,σ).

These complex coordinates should satisfy

4
∑

a=1

WaW̄a = R2,

which corresponds to S7 and further more

4
∑

a=1

(

Wa∂mW̄a − W̄a∂mWa

)

= 0, (2.4)

which reduces the embedding to CP
3. Here t is the AdS time. In terms of the embedding

coordinates, the CP
3 condition (2.4) becomes

4
∑

a=1

r2
a∂mϕa = 0, m = 0, 1. (2.5)

For this embedding, the metric induced on the string worldsheet is given by

Gmn = −∂(mZ∂n)Z̄ +

4
∑

a=1

∂(mWa∂n)W̄a

= R2

[

−1

4
∂mt∂nt +

4
∑

a=1

(

∂mra∂nra + r2
a∂mϕa∂nϕa

)

]

.
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The corresponding string Lagrangian becomes

L = Ls +
√

8λΛ

(

4
∑

a=1

r2
a − 1

)

+
√

8λΛ0

4
∑

a=1

r2
a∂0ϕa +

√
8λΛ1

4
∑

a=1

r2
a∂1ϕa,

where Λ, Λ0,Λ1 are Lagrange multipliers.

In the case at hand, the background metric does not depend on t and ϕa. Therefore,

the conserved quantities are the string energy Es and four angular momenta Ja, given by

Es = −
∫

dσ
∂L

∂(∂0t)
, Ja =

∫

dσ
∂L

∂(∂0ϕa)
. (2.6)

In order to reduce the string dynamics on Rt × CP
3 to the NR integrable system, we

use the ansatz [25 – 27]

t(τ, σ) = κτ, ra(τ, σ) = ra(ξ), ϕa(τ, σ) = ωaτ + fa(ξ), (2.7)

ξ = ασ + βτ, κ, ωa, α, β = constants.

Then the Lagrangian L takes the form (prime is used for ∂/∂ξ)

L = −
√

2λ(α2 − β2)

4
∑

a=1

[

r′2a + r2
a

(

f ′
a −

βωa

α2 − β2

)2

− α2ω2
a

(α2 − β2)2
r2
a

]

+
√

8λΛ

(

4
∑

a=1

r2
a − 1

)

+
√

8λΛ0

4
∑

a=1

ωar
2
a +

√
8λΛ1

4
∑

a=1

f ′
ar

2
a.

Now we can integrate the equations of motion for fa to get

f ′
a =

1

α2 − β2

(

Ca

r2
a

+ βωa + Λ1

)

, (2.8)

where Ca are integration constants. By using (2.8), the equations of motion for ra can be

written as

(

α2 − β2
)

r
′′

a − 1

α2 − β2

Ca

r3
a

+

[

ω2
a + 2 (Λ + Λ0ωa) +

(Λ1 + βωa)
2

α2 − β2

]

ra = 0.

These can be obtained from the Lagrangian

L =

4
∑

a=1

[

(α2 − β2)r
′2
a − 1

α2 − β2

Ca

r2
a

− ω2
ar

2
a

]

−2Λ

(

4
∑

a=1

r2
a − 1

)

− 2Λ0

4
∑

a=1

ωar
2
a −

1

α2 − β2

4
∑

a=1

(Λ1 + βωa)
2 r2

a.

From the equations of motion for the Lagrange multipliers it follows that Λ1 = 0. Thus,

we end up with the following effective Lagrangian for the coordinates ra

LNR = (α2 − β2)

4
∑

a=1

[

r
′2
a − 1

(α2 − β2)2

(

C2
a

r2
a

+ α2ω2
ar

2
a

)]

(2.9)

−2Λ

(

4
∑

a=1

r2
a − 1

)

− 2Λ0

4
∑

a=1

ωar
2
a.
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This is the Lagrangian for the NR integrable system [27] with one more embedding condi-

tion which comes from the CP
3 condition (2.5),

4
∑

a=1

ωar
2
a = 0. (2.10)

In addition, from (2.8) and the constraint
∑4

a=1 f ′
ar

2
a = 0, one can find Λ1 = −∑4

a=1 Ca.

Since Λ1 should be zero, this leads to

4
∑

a=1

Ca = 0. (2.11)

These two extra conditions for the NR system of CP
3 are the main difference from that of

the sphere geometry. In other words, strings moving on Rt × CP
3 should satisfy these two

conditions additionally.

The Virasoro constraints (2.3) give the conserved Hamiltonian HNR and a relation

between the embedding parameters and the arbitrary constants Ca:

HNR = (α2−β2)

4
∑

a=1

[

r′2a +
1

(α2−β2)2

(

C2
a

r2
a

+α2ω2
ar

2
a

)]

=
α2+β2

α2−β2

κ2

4
, (2.12)

4
∑

a=1

Caωa+β(κ/2)2 = 0. (2.13)

For closed strings, ra and fa satisfy the following periodicity conditions

ra(ξ + 2πα) = ra(ξ), fa(ξ + 2πα) = fa(ξ) + 2πna, (2.14)

where na are integer winding numbers.

The conserved charges can be computed from the definition (2.6). Using the

ansatz (2.7), one can express the angular momenta as

Ja =
2
√

2λ

α

∫

dσ ra(ξ)
2∂0ϕa, a = 1, 2, 3, 4. (2.15)

Inserting the solutions (2.8) into these, we can find

Es =
κ
√

2λ

2α

∫

dξ, Ja =
2
√

2λ

α2 − β2

∫

dξ

(

β

α
Ca + αωar

2
a

)

. (2.16)

In view of (2.10) and (2.11), one arrives at

4
∑

a=1

Ja = 0. (2.17)

This condition, first noticed in [15], appears naturally in our NR approach.

– 5 –
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3. Two angular momenta solutions

In this section we are interested in finding string configurations corresponding to the fol-

lowing particular solution of (2.10) and (2.11)

r1 = r3, r2 = r4, ω1 = −ω3, ω2 = −ω4.

Two angular velocities ω1, ω2 are independent and lead to strings moving in CP
3 with two

angular momenta. A special case ω2 = 0 corresponds to the cases considered in [15, 16].

3.1 Explicit solutions

We will use the parametrization

r1 = r3 =
1√
2

sin θ, r2 = r4 =
1√
2

cos θ.

From the NR Hamiltonian (2.12) one finds

θ′2(ξ) =
1

(α2−β2)2

[

κ2

4
(α2+β2)−2

(

C2
1 +C2

3

sin2 θ
+

C2
2 +C2

4

cos2 θ

)

− α2
(

ω2
1 sin2 θ+ω2

2 cos2 θ
)

]

.

We further restrict ourselves to C2 = C4 = 0 to search for GM and SS solutions. Eqs. (2.11)

and (2.13) give

C1 = −C3 = −βκ2

8ω1
.

In this case, the above equation for θ′ can be rewritten in the form

(cos θ)′ = ∓α
√

ω2
1 − ω2

2

α2 − β2

√

(z2
+ − cos2 θ)(cos2 θ − z2

−), (3.1)

where

z2
± =

1

2(1 − ω2

2

ω2

1

)

{

y1 + y2 −
ω2

2

ω2
1

±
√

(y1 − y2)2 −
[

2 (y1 + y2 − 2y1y2) −
ω2

2

ω2
1

]

ω2
2

ω2
1

}

,

y1 = 1 − κ2

4ω2
1

, y2 = 1 − β2

α2

κ2

4ω2
1

.

The solution of (3.1) is given by

cos θ = z+dn (Cξ|m) , C = ∓α
√

ω2
1 − ω2

2

α2 − β2
z+, m ≡ 1 − z2

−/z2
+, (3.2)

where dn (Cξ|m) is one of the elliptic functions.

To find the full string solution, we also need to obtain the explicit expressions for the

functions fa from (2.8)

fa =
1

α2 − β2

∫

dξ

(

Ca

r2
a

+ βωa

)

.

– 6 –
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Using the solution for θ(ξ) in (3.2), we can find

f1 = −f3 =
β/α

z+

√

1 − ω2
2/ω

2
1

[

Cξ − 2(κ/2)2/ω2
1

1 − z2
+

Π

(

am(Cξ),−z2
+ − z2

−

1 − z2
+

|m
)]

,

f2 = −f4 =
βω2

α2 − β2
ξ.

Here, Π is the elliptic integrals of the third kind. As a consequence, the full string solution

is given by

W1 =
R√
2

√

1 − z2
+dn2 (Cξ|m) ei(ω1τ+f1),

W2 =
R√
2
z+dn (Cξ|m) ei(ω2τ+f2), (3.3)

W3 =
R√
2

√

1 − z2
+dn2 (Cξ|m) e−i(ω1τ+f1),

W4 =
R√
2
z+dn (Cξ|m) e−i(ω2τ+f2).

Let us also note that (3.3) contains both cases: α2 > β2 and α2 < β2, which correspond

to the GM and SS strings respectively as mentioned in [24].

The geometric meaning of the explicit solutions (3.3) is as follows. Each pairs of com-

plex coordinates, (W1,W2) and (W3,W4), describe a spiky solutions in S2 sphere geometry

but with dynamics at opposite points in the U(1) fiber. The two phases in (W1,W2) are

exactly opposite to those of (W3,W4) which, together with the dynamics in U(1), ensures

vanishing of the total momentum. This behavior has been also noticed for the string in

Rt × S2 × S2 in [15].

3.2 Infinite volume limit

The GM and SS in the infinite volume can be obtained by taking z− → 0. In this limit,

the solution reduces to

cos θ =
sin p

2

cosh(Cξ)
,

where the constant z+ ≡ sin p/2 is given by

z2
+ =

y2 − ω2
2/ω

2
1

1 − ω2
2/ω

2
1

(GM), and z2
+ =

y1 − ω2
2/ω

2
1

1 − ω2
2/ω

2
1

(SS).

One angular momentum solutions are given by ω2 = 0. Inserting these into (2.16), one can

find energy-charge dispersion relation. For the GM, the energy and angular momentum J1

become infinite but their difference remain finite:

Es − J1 =

√

J2
2 + 8λ sin2 p

2
. (3.4)

While this is exactly same as that of the dyonic GM in the AdS5 × S5, the result arises

from quite different string dynamics in the CP
3. Similarly, the dispersion relation for the

SS becomes

Es −
√

2λ∆ϕ =
√

2λp.

– 7 –
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3.3 Finite-size effects

Using the most general solutions (3.3), we can calculate the finite-size corrections to the

energy-charge relation (3.4) in the limit when the string energy Es → ∞. This analysis

depends crucially on the sign of the difference α2 − β2. The GM solution corresponds

to α2 > β2 while the SS to α2 < β2. While the string dynamics are quite different,

computations are identical to the cases in the sphere geometries. Therefore, we will provide

only the results here, referring technical details to [30, 18].

3.3.1 Giant magnon

We begin with the GM case, i.e. α2 > β2. Then, one obtains from (2.16) the following

expressions for the conserved string energy Es and the angular momenta Ja

E =
κ(1 − β2/α2)

ω1z+

√

1 − ω2
2/ω

2
1

K
(

1 − z2
−/z2

+

)

,

J1 =
2z+

√

1 − ω2
2/ω

2
1

[

1 − β2(κ/2)2/α2ω2
1

z2
+

K
(

1 − z2
−/z2

+

)

− E
(

1 − z2
−/z2

+

)

]

, (3.5)

J2 =
2z+ω2/ω1
√

1 − ω2
2/ω

2
1

E
(

1 − z2
−/z2

+

)

, J3 = −J1, J4 = −J2.

As a result, the condition (2.17) is identically satisfied. Here, we introduced the notations

E =
Es√
2λ

, Ja =
Ja√
2λ

. (3.6)

The computation of ∆ϕ1 gives

p ≡ ∆ϕ1 = 2

∫ θmax

θmin

dθ

θ′
f ′
1 (3.7)

= − 2β/α

z+

√

1−ω2
2/ω

2
1

[

(κ/2)2/ω2
1

1−z2
+

Π

(

−z2
+−z2

−

1−z2
+

∣

∣

∣

∣

1−z2
−/z2

+

)

−K
(

1−z2
−/z2

+

)

]

.

In the above expressions, K(m), E(m) and Π(n|m) are the complete elliptic integrals.

Expanding the elliptic integrals, we obtain

E − J1 =
√

J 2
2 + 4 sin2(p/2) − 16 sin4(p/2)

√

J 2
2 + 4 sin2(p/2)

(3.8)

× exp









−
2

(

J1 +
√

J 2
2 + 4 sin2(p/2)

)

√

J 2
2 + 4 sin2(p/2) sin2(p/2)

J 2
2 + 4 sin4(p/2)









.

It is easy to check that the energy-charge relation (3.8) coincides with the results in [32]

(and in [33] for J2 = 0), which describes the finite-size effects for dyonic GM on Rt × S3

subspace of AdS5 × S5. The difference is that in the last case the relations between E , J1,

J2 and E, J1, J2 are given by

E =
2π√

λ
E, J1 =

2π√
λ

J1, J2 =
2π√

λ
J2,

while for strings on Rt × CP
3 they are written in (3.6).

– 8 –
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3.3.2 Single spike

Now, we turn our attention to the SS case, when α2 < β2. The computation of the

conserved quantities (2.16) and ∆ϕ1 gives

E =
κ(β2/α2 − 1)

ω1

√

1 − ω2
2/ω

2
1z+

K
(

1 − z2
−/z2

+

)

,

J1 =
2z+

√

1 − ω2
2/ω

2
1

[

E
(

1 − z2
−/z2

+

)

− 1 − β2(κ/2)2/α2ω2
1

z2
+

K
(

1 − z2
−/z2

+

)

]

,

J2 = − 2z+ω2/ω1
√

1 − ω2
2/ω

2
1

E
(

1 − z2
−/z2

+

)

,

∆ϕ1 = − 2β/α
√

1 − ω2
2/ω

2
1z+

[

(κ/2)2/ω2
1

1 − z2
+

Π

(

−z2
+ − z2

−

1 − z2
+

|1 − z2
−/z2

+

)

− K
(

1 − z2
−/z2

+

)

]

.

From these, we obtain

J1 =
√

J 2
2 + 4 sin2(p/2),

and

E − ∆ϕ1 = p + 8 sin2 p

2
tan

p

2
exp

(

− tan p
2 (∆ϕ1 + p)

tan2 p
2 + J 2

2 csc2 p

)

. (3.9)

This is the leading finite-size correction to the “E − ∆ϕ” relation for the SS string with

two angular momenta on Rt × CP
3. It coincides with the string result for Rt × S3 found

in [30]. As in the GM case, the difference is in the identification (3.6).

4. Concluding remarks

We have shown that the NR integrable system is particularly effective to find classical

string solutions for AdS4 × CP
3. The extra constraints arising from CP

3 geometry can

be naturally reformulated into simple conditions under the NR ansatz. In addition to the

GM and SS solutions moving in Rt × S2 × S2 with a single angular momentum, the NR

system can be used to study more complicated string dynamics. As shown in this paper,

the GM and SS solutions in CP
3 with two angular momenta solutions can be described in

the same way as the cases in the sphere geometries. These solutions describe the strings

moving in Rt ×CP
3 where the two angular momenta in one S2 are opposite to those in the

other S2 executing motion on S1 in the U(1) Hopf fibration over S2 × S2. Of course, the

extra constraints are limiting the possible string configurations. It would be interesting to

find other configurations which could be found within the context of the NR system (some

solutions are given in the appendix). Another interesting feature would be the relation of

the NR integrable system to other classical integrable systems such as complex sine-Gordon

model as has been shown for the type IIB string theory on AdS5 × S5 in [30].

The two angular momenta string states are related to the composite operators in the

gauge theory side. The BPS state corresponding to the string vacuum is tr
[

(A1B1)
L
]

where A1 and B1 are the scalar fields of N = 6 Chern-Simons theory in the bifundamental
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representation (N, N̄) and (N̄,N), respectively. The excited states are obtained by replac-

ing these fields with fields in the theory. The composite operators dual to the string with

two angular momenta with the dispersion relation (3.4) should be

tr
[

(A1B1)
J1(A2B2)

J2

]

+ · · · ,

where the ellipsis represents the permutations of the fields while maintaining the alternating

spin chain structure and A2 and B2 are another scalar fields.

It would be interesting to compare the energy-charge dispersion relation we have ob-

tained here with the solutions of all-loop Bethe ansatz equations recently proposed in [8].

The finite-size corrections can not be derived solely from the Bethe ansatz equations. In-

stead, one can use the Lüscher correction formulation based on exact S-matrix which has

been particularly powerful in the AdS/CFT correspondence [34]. It would be interesting

to compute the corrections based on a recently proposed S-matrix [9] and compare with

our results in the large ‘t Hooft coupling limit.
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A. More string solutions on Rt × CP
3

Basic facts about CP
3. Let us explain briefly the basic properties of the CP

3 spaces.

It is most convenient to define an n-dimensional complex projective space CP
n as the

family of one-dimensional subspaces in C
n+1, i.e. this is the quotient C

n+1/(C \ {0}). The

equivalence relation is defined as

αZ1 : · · · : αZn+1 = Z1 : · · · : Zn+1.

The space CP
n itself is covered by patches Ui : {Z1 : · · · : Zn+1 ∈ CP

n |Zi 6=
0}, i = 1, . . . , n + 1. One can see that each patch Ui is isomorphic to CP

n, where

the isomorphism is defined by W
(i)
j = Zj/Zi, j 6= i. One can choose local coordnates

W = (W1,W2, . . . ,Wn)t ∈ C
n+1 with Wj ≡ W

(n+1)
j . The Fubini-Study metric then is

given by the line element

ds2 =
(1 + |W |2)|dW |2 − |W †dW |2

(1 + |W |2)2 .

One can think of CP
n as the homogeneous space CP

n = U(n + 1)/(U(n)×U(1)). The

u(n + 1) Lie algebra f can be realized as anti-hermitian matrices and splits into two parts:

p = u(n)⊕u(1) and its orthogonal completion cp(n) with respect to the U(n+1) Killing for

p = u(n) ⊕ u(1) = {iM ∈ u(n + 1) | [Γ,M ] = 0}
cp(n) = {iM ∈ u(n + 1) | {Γ,M} = 0},
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where M is traceless and hermitian and

Γ =

(

1n

−1

)

.

A generator of cp(n) part, B then is given by

B =

(

W †

−W

)

.

Then one can write schematically

f = p ⊕ cp, [p, p] ⊂ p, [p, cp] ⊂ cp, [cp, cp] ⊂ cp.

More strings on Rt×CP
3 and NR system. The next step is to consider concrete solu-

tions, taking into account all of the existing constraints, which can be summarized as follows

4
∑

a=1

r2
a = 1,

4
∑

a=1

ωar
2
a = 0,

4
∑

a=1

Ca = 0,
4
∑

a=1

Caωa + β(κ/2)2 = 0.

From the first two equalities we can express two of the ra coordinates through the

remaining ones. Then, we are left only with relations between the parameters. In order

to be able to compare with the known particular solutions, we choose to express r2
1,3 as

functions of r2
2,4. The general solution is

r2
1 =

ω3(1 − r2
2 − r2

4) + ω2r
2
2 + ω4r

2
4

ω3 − ω1
, r2

3 =
ω1(1 − r2

2 − r2
4) + ω2r

2
2 + ω4r

2
4

ω1 − ω3
. (A.1)

In particular, for ω1 = −ω3, ω2 = ω4 = 0, we have r2
1 = r2

3. The case considered in [15, 16]

is reached after fixing r2
2 = r2

4, r2
1 + r2

2 = 1/2.

Denoting dynamical variables as

r1 = r3 =
r√
2
, r2 = r4 =

√
1 − r2

√
2

,

one can describe the system by only one independent variable r. The first order differential

equation for r can be obtained either from the equations of motion (integrating them once)

or from the Virasoro constraints. It goes as follows

∑

a

[

(α2 − β2)r′a
2
+

C2
a

α2 − β2

1

r2
a

+
α2

α2 − β2
ω2

ar
2
a +

2βCaωa

α2 − β2

]

= (κ/2)2

⇒ (1 − β2)
r′2

1 − r2
+

4

1 − β2

C2

r2
+

1

1 − β2
ω2r2 +

4βCω

1 − β2
= (κ/2)2 (A.2)

Here, without loss of generality, we set α = 1. Using the constraint

2Cω + β(κ/2)2 = 0
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we find

(1 − β2)2r′
2

= (1 − r2)
{

(1 + β2)(κ/2)2 − 4C2

r2 − ω2r2
}

= −ω2 (1−r2)
r2

{

4C2

ω2 − (1 + β2) (κ/2)2

ω2 r2 + r4
}

(A.3)

The right hand side determines the turning points r′2 = 0 and they are three. In order the

string to extends to the equator of the sphere, one must choose r = 1. To find a solution

of the type we are looking for, r2 = 1 has to be double zero of the right hand side of (A.3).

The latter conditions leads to the following constraints

(1 + β2)(κ/2)2 = ω2 + 4C2, 2Cω + β(κ/2)2 = 0

which can be obtained either by substituting r = 1 in the right hand side of (A.3) or from

the Virasoro constraints. The correct choice for the parameters solving the above equation

and giving GM type string solutions is

κ/2 = ω, α = 1, β = −2C

ω
(A.4)

Let us turn to the solutions developing a SS in the Rt × S2 × S2 subspace. This

configuration can be realized in terms of the NR integrable system with specific choice

of the parameters. The solutions we are looking for are characterized by large quantum

numbers, especially large energy. The careful analysis shows that in order to have such

solutions one has to choose the parameters in a specific way. The “spiky” choice for the

parameters, namely the choice giving solutions with a SS but infinitely wound around

the equator, is slightly different from the case of the GM. In fact the constraints on the

parameters are the same, but instead of the choice (A.4), now we choose the other solution

to the constraint

κ = 2C, β = −2ωC

κ2
= − ω

2C

The equation for the variable r is the same, but the parameters are fixed differently

du

dξ
= u′ =

2ω

1 − β2
(1 − u)

√
u − ū.

Above we use the following notations

u = r2 = sin2 θ, ū =
4C2

ω2
,

dξ =
du

u′
=

(1 − β2) du

2ω(1 − u)
√

u − ū
=

(4C2 − ω2) du

8C2ω(1 − u)
√

u − ū
(A.5)

The conserved quantities are

E = κT

∫

dξ

J =
Cβ

(1 − β2)

∫

dξ +
ω

(1 − β2)
T

∫

u dξ

∆φ =
C

(1 − β2)

∫

dξ

u
+

βω

(1 − β2)

∫

dξ.
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To find finite results (which is so for E − J in the GM case) we consider

E − T∆φ =
2CT

ω
arccos

√
ū =

√
λ

π
θ̄

where

θ̄ =
π

2
− θ0

For the total spin J we get

J =
2Tω

ω
cos θ0 = 2T sin θ̄

All this implies finally

∆ = (E − T∆φ) − J =

√
λ

π
(θ̄ − sin θ̄)

which completes our result on SS case with this ansatz. We note that the solution in this

case is

sin θ = tanh

(

ωz̄

1 − β2
(ξ − ξ0)

)

. (A.6)

Now we consider more general solutions. It is reasonable to ask for symmetric motion

on the subspace S2 × S2 and therefore to set

r2
1 + r2

2 =
1

2
, r2

3 + r2
4 =

1

2
.

Then one can use the parametrization

r2
1 + r2

3 = r2, r2
2 + r2

4 = 1 − r2.

Having in mind that the total worldshhet momentum has to be zero, one can set

C1 = −C3, ω1 = −ω3 = ω.

It follows then that

C2 = −C4.

Using the above constraints one can find

(

1 − ω2

ω

)

r2
2 −

(ω4

ω
+ 1
)

r2
4 = 0.

There are two cases:

a) ω2 = ω which entails ω4 = −ω — this choice slightly generalizes the case considered

above;
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b) r2 and r4 are proportional

r2
2 =

ω4 + ω

ω − ω2
r2
4 := Γ2r2

4.

Let us consider the last possibility in more details. The constraints tells us that

r2
2 =

Γ2

1 + Γ2
(1 − r2), r2

4 =
1

1 + Γ2
(1 − r2)

r2
1 =

ω(1 + Γ2) + ω2Γ
2 + ω4

ω(1 + Γ2)
r2 − ω2Γ

2 + ω4

ω(1 + Γ2)
. (A.7)

Rewriting the last equality as

r2
1 = (1 + b2)r2 − b2, b2 =

ω2Γ
2 + ω4

ω(1 + Γ2)
,

one can find the lower bound

rmin ≤ r, rmin =
b√

1 + b2
.

It is better to use y2 = (1 + b2)x2 = (1 + b2)(1 − r2) and then the radial dynamical

variables become

r2
1 = 1 − y2, r2

2 = c2y2, r2
3 = d2y2, r2

4 = (1 − c2)y2, (A.8)

where

c2 =
Γ2

(1 + b2)(1 + Γ2)
, d2 =

b2

(1 + b2)
.

The Virasoro constraints give

(α2−β2)
y′2

1−y2
+

1

α2−β2

[

C2
1

1−y2
+

C̃2

y2

]

+
α2

α2−β2

[

ω2
1+ω̃2y2

]

=
α2+β2

α2−β2
(κ/2)2, (A.9)

where

ω̃2 =
(ω2

2 − ω2
1)Γ

2 + (ω2
4 − ω2

1)

(1 + b2)(1 + Γ2)
, C̃2 = C̃2

2 + C̃2
3 + C̃2

4 , C̃2
2 =

C2
2 (1 + b2)

c2
,

C̃2
3 =

C2
3(1 + b2)

b2
, C̃2

4 =
C2

4 (1 + b2)

1 − c2
.

The system we obtained has the same type solutions as in the previous considerations and

can be solved in terms of elliptic functions. Note that all the spins are different, so we find

multi-spin solutions.

It is a standard procedure to bring the above equation into a Weierstrass form. To do

that we define

ξ̃ =
ω̃

1 − β2
ξ, ζ =

ã

3
+ y2,
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and rewrite the equation (A.9) as

(

dζ

dξ̃

)2

= 4ζ3 − g2ζ − g3, (A.10)

with

g2 =
ã2

3
− b̃, g3 = C̃2 =

ãb̃

3
+

2

27
ã3,

where

ã =
ω2

1

ω̃2
− 1 − 1 + β2

ω̃2
(κ/2)2, b̃ =

1 + β2

ω̃2
(κ/2)2 +

C̃2 − ω2
1 − C2

1

ω̃2
.

The solution is

ζ = e3 − e31dn2
(√

e31ξ̃, κ̃
)

(A.11)

where ei are the roots of the rhs of (A.10), emn = em − en and the modulus is defined by

κ̃ = e21/e31. Going back to the variable r we get

r2 = 1 − 1

1 + β2

(

e3 −
a

3

)

+
e31

1 + β2
dn2

(√
e31

ω̃

1 − β2
ξ, κ

)

.

Making specific choice of the parameters as in the above, one can get either GM or SS solu-

tions. The dispersion relations can be obtained using the explicit form of the charges (2.16)

and the relevant constraints.
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